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ABSTRACT 

In this research work, synchronization of four 

dimensional hyperchaotic Lorenz system (Driver 

System) with Chen’s system (Response system) are 

investigated based on backstepping technique, 

unlike the well known i = j, multi-switching of the 

indices was employed in the usual master-slave 

synchronization scheme. We provided varieties of 

non-identical indices, that is, i = j of the driver 

system. In this high dimension, more switching 

options for constructing the error space vector due 

to the large number of variables are available; and 

by implication providing variety of synchronization 

directions between the variables of the master and 

the slave systems, which could be used in securing 

electronic information and communication. 

Keywords: Synchronization, multi-switching, 

hyperchaotic, dynamical system. 

 

I. INTRODUCTION 
Chaos theory is a branch of mathematics 

focused on the behavour of dynamical systems that 

is highly sensitive to initial conditions – a response 

popularly referred to as the butterfly effect. 

Dynamical system are deterministic, whose feature 

behaviour is fully determined by their initial 

conditions, with no random elements involved. 

The dynamical system concept is a 

mathematical formalization for any fixed “rule” 

which describes the time dependence of a points 

position in its ambient space. This work is 

deterministic in nature, and as such and being a 

deterministic model has always produces the same 

output from a given starting condition or initial 

state. 

It has been found or discovered that Non 

linear deterministic dynamical systems exhibits 

sensitive dependence on initial conditions. 

However, different methods have been employed to 

describe their existence in the fields of sciences, 

medicine and engineering Strogatz (2000) [1]. Let 

us note that amongst the attributes of nonlinear 

dynamical systems such as chaos, bifurcation, 

multi-stability, pattern formation and 

synchronization have been found very useful in 

many disciplines. 

The study of behaviour of dynamical 

system cannot be studied in isolation without 

synchronization of chaotic and hyperchaotic 

systems, which has been referred to as a major 

break through [2] and one of the most important 

attributes of nonlinear dynamical systems, because 

of its potential applications in modelling brain 

activities, chemical reactions and more importantly 

in information processing and secure 

communication (coded signal). 

More discoveries in the various types of 

synchronization came into the open due to 

increasing interest in the study of synchronization 

of chaotic systems. Such types of synchronization 

include complete synchronization [3], phase 

synchronization [4], lag synchronization [5], 

generalized synchronization [6], [7], measure 

synchronization [8] [9] and [10], projective 

synchronization [11], [12], and [13], anticipated 

synchronization [14], [15], reduced-order 

synchronization [16] and function projective [17]. 

Many outstanding methods of achieving 

synchronization between two or more non-linear 

systems have been proposed and well developed. 

These include, among others the Adaptive control 

[18], active control and robust synchronization 

[19], impulsive control [20], adaptive fuzzy 

feedback [21], sliding mode control [22] and back 

stepping technique [23]. 
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Backstepping technique did show or 

exhibit outstanding performance in the 

synchronization of identical and non-identical 

chaotic systems, stabilization and tracking [24] and 

controlling of hyperchaotic systems [25], and 

useful in either the strict feedback or the non-strict 

feedback systems [26]. 

The temporal complexity and apparent 

randomness of chaotic systems is the most 

important characteristics of chaos [27]. So, the 

primary motivation or purpose of synchronization 

is that, one can hide certain electronic information 

to be transmitted in chaotic signal  and retrieve by 

the technique of chaotic synchronization. 

Nevertheless, Meng et al [27] opined that absolute 

security of information and communication based 

on low dimensional chaotic [2] and hyperchaotic 

[28] systems, cannot be fully guaranteed. The 

reason being that, it can be reconstructed easily and 

separated from the secure information. 

Therefore, concerted efforts were made to 

generate higher dimensional systems. In this 

direction, 4-dimensional systems have been 

studied, most of which are known to exhibit 

instability in two directions implying that the 

possibility for the existence of two positive 

Lyapunov exponent is ascertained. This paper 

certainly investigated 4-dimensional hyperchaotic 

system. More interestingly, there is the 5D 

hyperchaotic system coined by Yang and Chen 

(2013) [29]. 

In this work – multi-switching 

synchronization of chaotic system, we investigated 

the multi-switching of coupled systems with active 

controls. The synchronization is achieved with the 

slave-master scheme, and it is extended to 

investigate the synchronisation problems with 

different combinations of slave states with master 

systems.  The different active controller is designed 

for the chosen slave system state to be 

synchronised with the target master system states.  

The multi-switching synchronisation of Lorenz 

system is considered.  Illustration provided that 

combination synchronisation as a scheme would 

achieve for the multi-switching synchronisation to 

combination synchronisation such that the state 

variables of two or more driving systems 

synchronise with different variables of the response 

system, simultaneously. 

 

II. SYSTEM DESCRIPTION 
Based on the Lorenz system, a new 

chaotic system was reported by [30]which has 

attracted the attention of many researchers [31]–

[34]. The Lorenz chaotic system is described by 

 

x  =  a(y − x) 

y  =  cx −  xz 

z  =  xy –  bz    

     

 (1)  

Where a,b and c are positive real constant. 

It is a 3D autonomous system with six terms 

including only two quadratic terms in a form very 

similar to the Lorenz, Chen and Lu systems in [35] 

– [38], but it has three very different fixed points: 

one saddle and two stable node-foci. By 

introducing a linear feedback controller to the 

second equation of the Lorenz-like system (1), the 

following new hyperchaotic system is obtained 

[39]. 

x  =  a(y − x) 

y  =  cx + y −  xz − w 

z  =  xy –  bz 

w  =  dyz    

     

 (2) 

The attractors of the system at the states x 

– y, x – z, x – w, y – z, y – w, z – x, z – y and z – w 

are as shown in the upper part of figure 1 which the 

time series of the combined state of the system is as 

shown in the lower part. 

 

Decryption of the Hyperchaotic Chen’s model 

The hyperchaotic Chen system is given by 

x  =  a y − x + w 

y  =  dx − xz + cy 

z  =  xy –  bz 

w  =  dy + ew    

     (3) 

 

Where a = 35, b = 3, c = 12, d = 7, e = 0.5 are 

parameters. The attractors of the system at the 

states x – y, x – z, x – w, y – z, y – w, z – x, z – y 

and z – w are as shown in the upper part while the 

time series is shown in the lower part of figure 2. 

 

 

 

III. DEFINITION AND FORMULATION 

OF MULTISWITCHING 

SYNCHRONIZATION 
Considering the following master-slave n 

dimensional chaotic systems, where the master 

system is given by  

𝑥 1 = 𝑓1(𝑥1) 

𝑥 2 = 𝑓2(𝑥2) 

𝑥 𝑚 = 𝑓𝑚 (𝑥𝑚 )    

     

 (4) 

and the controlled slave system is given by 
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𝑦 1 = 𝑔1 𝑦1  
𝑦 2 = 𝑔2 𝑦2  

𝑦 𝑥 = 𝑔𝑥 𝑦𝑥     

     

 (5) 

where𝑥𝑖𝑦𝑖 =  𝑖 = 1, 2 … , 𝑛  𝜖𝑅𝑛are state space 

vectors of the systems, 𝑓𝑛 and 𝑔𝑛 : 𝑅𝑛 → 𝑅𝑛are two 

continuous vector functions and 𝑢𝑖 𝑖 =
1, 2, …, 𝑛: 𝑅𝑛→𝑅𝑛 is a nonlinear control function. 

 

Definition 1:  

According to [40] in [4] ff there exists two 

constants matrices A, B ε R
n  

and A, B = 0, such 

that lim∞ 𝑘𝐵𝑦𝑖 − 𝐴𝑥𝑖𝑘 =  0and where k.k is the 

matrix norm and A,B are scaling matrices, then 

systems (4) and (5) are said to be in 

synchronization. 

 

Observation1 

 The error states in relation to the 

definition 1 are strictly chosen to satisfy the 

definition 𝑒𝑖𝑗  (𝑖 =  𝑗 =  1, 2, 3. . . 𝑛) are the indices 

of the error and n refers to the number of dimension 

of the chaotic system. Hence, we can write 

𝑒𝑖𝑗  = 𝑦𝑖 − 𝑥𝑗where 𝑦𝑖 , 𝑥𝑖 are the slave and master 

systems respectively. We observe that for 𝑒𝑖𝑗 =

𝑦𝑖 − 𝑥𝑗  (𝑖 =  𝑗 =  1, 2, 3. . . 𝑛), we have 𝑒11 = 𝑦1 −

𝑥1 ,  𝑒22  = 𝑦2 − 𝑥2 ,  𝑒33 = 𝑦3 − 𝑥3 , . . . 𝑒𝑛𝑛 = 𝑦𝑛 −
𝑥𝑛  and this is called complete synchronization, in 

this case there is no switching. 

If the error states in relation to definition 1 

are redefined such that 𝑒𝑖𝑗 (𝑖 =  𝑗) or 𝑒𝑖𝑗  (𝑖 =  𝑗) 

and any of the member in the error dynamical 

system is interchanged and lim∞ 𝑘𝐵𝑦𝑖 − 𝐴𝑥𝑖𝑘 =  0 

then, systems (4) and (5) are said to be in switched 

synchronization state. 

 

Observation 2 

If 𝑖 and 𝑗 are chosen such that for𝑒𝑖𝑗 = 𝑦𝑖 −

𝑥𝑗 , (𝑖 =  𝑗, then we have 

𝑒11  = 𝑦1−,  𝑒12  = 𝑦1 − 𝑥2 ,  𝑒13  = 𝑦1 − 𝑥3 ,  𝑒14

= 𝑦1 − 𝑥4  . . . 𝑒1𝑛 =  𝑦1 − 𝑥𝑛 , 
𝑒21  = 𝑦2 − 𝑥1 , 𝑒22  = 𝑦2 − 𝑥2 , 𝑒23  

= 𝑦2 − 𝑥3 ,  𝑒24  
= 𝑦2 − 𝑥4  . . . 𝑒2𝑛  = 𝑦2 − 𝑥𝑛 , 

𝑒31  = 𝑦3 − 𝑥1 , 𝑒32  = 𝑦3 − 𝑥2 , 𝑒33 = 𝑦3 − 𝑥3 ,  𝑒34  
= 𝑦3 − 𝑥4  . . . 𝑒3𝑛 = 𝑦3 − 𝑥𝑛 , 

𝑒41  = 𝑦4 − 𝑥1 , 𝑒42 = 𝑦4 − 𝑥2 , 𝑒43  = 𝑦4 − 𝑥3 ,  𝑒44

= 𝑦4 − 𝑥4  . . . 𝑒4𝑛 = 𝑦4 − 𝑥𝑛 , 
𝑒𝑚1  = 𝑦𝑚 − 𝑥1  ,𝑒𝑚2 = 𝑦𝑚 − 𝑥2  , 𝑒𝑚3  = 𝑦𝑚 −
𝑥3 , . . .  𝑒𝑚𝑛  = 𝑦𝑚 − 𝑥𝑛    
for m dimensions of the slave systems and n 

dimensions of the master systems. We comment 

here also that there are various switchings that can 

be formulated in addition to the above. 

 

From system (4), we let 𝑥 = 𝑥1 ,𝑦 = 𝑦1 , 𝑧 =
𝑧1and 𝑤 =  𝑤1 for the master system and 𝑥 =
 𝑥2 ,𝑦 = 𝑦2 ,𝑦 = 𝑧2  and 𝑤 = 𝑤2  for the slave 

system, and we chose the following switching. 

 

IV. DESIGN OF CONTROLLERS 
Let the master system be 

𝑥 1 = 𝑎1(𝑦1 − 𝑥1) 

𝑦 1 =  𝑐1𝑥1 + 𝑦1 − 𝑥1𝑧1 − 𝑤1  

𝑧 1 =  𝑥1𝑦1 −  𝑏1𝑧1   

      

𝑤 1 =  𝑑1𝑦1𝑧1    

    (6) 
and the slave system as   

    

𝑥 2 = 𝑎2 𝑦1 − 𝑥2  + 𝑤2 + 𝑢1 

𝑦 2 =  𝑑2𝑥2 − 𝑥2𝑧2 + 𝑐2𝑦2 + 𝑢2 

𝑧 2 =  𝑥2𝑦2 −  𝑏2𝑧2 + 𝑢3   
      

𝑤 2 =  𝑦2𝑧2 + 𝑒𝑤2 + 𝑢4   

     (7) 

 

Be the slave system, where 𝑢1  ,𝑢2 , 𝑢3  and 𝑢4  are 

the set of nonlinear controllers. The switches are 

chosen as: 

Case 1: 𝑒 13 = 𝑥2 − 𝑧1 , 𝑒 22 = 𝑦2 − 𝑦1 , 𝑒 34 = 𝑧2 −
𝑤1 , 𝑒 41 = 𝑤2 − 𝑥1 

Case 2:𝑒 12 = 𝑥2 − 𝑦1 , 𝑒 23 = 𝑦2 − 𝑧1 , 𝑒 34 = 𝑧2 −
𝑤1 , 𝑒 41 = 𝑤2 − 𝑥1, 

Case 3: 𝑒 14 = 𝑥2 − 𝑤1 , 𝑒 23 = 𝑦2 − 𝑧1 , 𝑒 31 = 𝑧2 −
𝑥1 , 𝑒 42 = 𝑤2 − 𝑦1  

Case 4: 𝑒 11 = 𝑥2 − 𝑥1 , 𝑒 21 = 𝑦2 − 𝑥1 , 𝑒 33 = 𝑧2 −
𝑧1 , 𝑒 44 = 𝑤2 − 𝑤1 

Case 5:𝑒 14 = 𝑥2 − 𝑤1 , 𝑒 21 = 𝑦2 − 𝑥1 , 𝑒 34 = 𝑧2 −
𝑤1 , 𝑒 43 = 𝑤2 − 𝑧1 

 

Case 1 

Using the notations in comment 2 and 

differentiating the error dynamics, we have 

𝑒 13 =  𝑋 1 − 𝑋 2 

𝑒 22 =  𝑦 2 − 𝑦 1 

𝑒 34 =  𝑍 2 − 𝑊 
1  

𝑒 41 =  𝑊 
2 − 𝑋 1    

     

 (8) 

And by substituting 

e 13=−a2e13 + a2e2 + a2(y1−z1) − x1y1 + bz1 + w2 + 

u1 

e 22=2c2e22 + e13d2− z2(e13+ z1) + y1(c2−1) + 

z1(d2+x1)−c1x1 +w1− c2e22 + u2 

e 34=−b2e34−e22+e22(x2+1)+ x2y1− b2 w1− d1y1z1+ u3 

e 41=−ee41+2ee41− e34+ e34 (y2+1) + y2w1 + 
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x1(e+a1)− a1y1+u4    (9) 

 

With error dynamics presented above, if 

appropriate u1, u2, u3 and u4 are chosen such that 

the system is stable and unchanged, then 

asymptotic stabilization would be realized leading 

to synchronization of the system. If e13= η1, its time 

derivative is 131 e    and we can stabilize the first 

part of (9), using the Lyapunov function, as 

  
     

  

whose time derivative is 

  
     

   

By substituting for η˙1 from (9) we have  

 
choosing e22 = α1 (η2 ) as a virtual controller,  

     

   

so that 

 
     

   

which is ≤  0 𝑓𝑜𝑟 𝑎2 >  0, 𝑘 ≤  0. Thus the 

subsystem is negative definite and assymptotically 

stable. Since the error between 𝑒22 and ∝1 (𝑧2) is 

estimative as  

𝜂 2= 𝑒22 −∝1 (𝜂1) and ∝1  𝜂2 = 0, the (𝜂1𝜂2) 

subsystem as 

𝜂 1 = − 𝑎2 − 𝑘 𝜂1 + 𝑎2𝜂2 

e 22=2c2e22 + e13d2− z2(e13+ z1) + y1(c2−1) + 

z1(d2+x1)−c1x1 +w1− c2e22 + u2 (15) 

Westablize (15) by discribing the second 

Lyapunovfunction as  

𝑣2 = 𝑣1 +
1

2
𝜂1

2     

     (16) 

Whose time derivative is 

𝑢2 =  −2𝑐2𝑒22 + 𝑧2 𝑒13 + 𝑧1 − 𝑦1(𝑐2 −
1) − 𝑧1 𝑑2 + 𝑥1 + 𝑐1𝑥1 − 𝑤1 + 𝑘𝜂2 (18) 

So that 

𝑣 2 =  − 𝑎2 − 𝑘  𝜂1
2 −  𝑐2 − 𝑘  𝜂2

2 (19) 

which is ≤  0 𝑓𝑜𝑟 𝑎2 >  0, 𝑐2 >  0,𝑘 ≤  0 . Thus 

the subsystem is negative definite and 

assymptotically stable. Since the error between 

𝑒13and ∝2 (𝜂1) is estimative as 𝜂1 =∝13−
∝1  𝜂1 𝑎𝑛𝑑 ∝2  𝜂1 =
 0, 𝑙𝑒𝑡 𝑒34  𝑏𝑒 𝜂3 ,𝑤𝑒𝑐𝑎𝑛 𝑤𝑟𝑖𝑡𝑒 (𝜂1 , 𝜂2 , 𝜂3) subsyste

m as 

𝜂 1 =  − 𝑎2 − 𝑘 𝜂1 + 𝑎2𝜂2 

𝜂 2 =  − 𝑐2 − 𝑘 𝜂2 + 𝑑2𝜂1  

     

 (20) 

𝜂 3 =  −𝑏2𝑒34 − 𝑒22 + 𝑒22 𝑥2 − 1 + 𝑥2𝑦1 − 𝑏2𝑤1

−  𝑑1𝑦1𝑧1 + 𝑢3 

We can stabilize (20) by defining the third 

Lyapunov function as 

𝑣3 =  𝑣2 +
1

2
𝜂3

2     

     (21)

  

Whose time derivative is 

𝑣 3 =  𝑣 2 + 𝜂3𝜂 3  (22) 

By substituting for 3  in (22), choosing 𝑒22= ∝3 

(𝜂2) as a virtual controller and choosing 

𝑢3 =  −𝑒22 𝑥2 + 1 − 𝑥2𝑦1 + 𝑏2𝑤1 + 𝑑1𝑦1𝑧1 +
𝑘𝜂3                (23) 

𝑣 3 = − 𝑎2 − 𝑘 𝜂1
2 −  𝑐2 − 𝑘 𝜂2

2 −  (𝑏2 − 𝑘)𝜂3
2

     (24) 

which is ≤ 0 for a2> 0, b2> 0, c2> 0 and k ≤ 

0. Thus, the (𝜂1 , 𝜂2 , 𝜂3)subsystem is 

assymptotically stable.  Since the error between 

𝑒22and ∝3 (𝜂2) is estimative as 𝜂2=𝑒22-∝3 (𝜂1) and 

∝3 (𝜂1) = 0, let 𝑒41and ∝3 (𝜂4) 𝑒41 =𝜂4. The 

(𝜂1 , 𝜂2 , 𝜂3 , 𝜂4) whole system as 

𝜂 1 =  − 𝑎2 − 𝑘 𝜂1 + 𝑎2𝜂2 

𝜂 2 =  − 𝑎2 − 𝑘 𝜂2 + 𝑑2𝜂1  

𝜂 3 =  − 𝑏2 − 𝑘 𝜂3 − 𝜂2   

     (25) 

𝜂 4 =  −𝑒𝑒41 + 2𝑒𝑒41 − 𝑒34 + 𝑒34 𝑦2 + 1 + 𝑦2𝑤1

+ 𝑥1 𝑒 + 𝑎1 − 𝑎1𝑦1 + 𝑢4 

We can stabilize (25) by defining the fourth 

Lyapunov function as 

𝑣4 =  𝑣3 + 
1

2
𝜂4

2     

     (26) 

whose time derivative is 

𝑣 4 =  𝑣 3 + 𝜂4𝜂 4    

     (27) 

By choosing 𝑒34 = ∝ 4 =  (𝜂3)  as a virtual 

controller and choosing 

We have  𝑢4 =  −2𝑒𝑒41 −  𝑒34 𝑦2 + 1 −  𝑦2𝑤1 −
𝑥1 𝑒 + 𝑎1 + 𝑎1𝑦1 + 𝑘𝜂4  (28) 

𝑣4 =  −(𝑎2 −  𝑘)𝜂1
2 − (𝑐2 −  𝑘)𝜂2

2 −  𝑏2 − 𝑘 𝜂3
2 −

 𝑒 − 𝑘 𝜂4
2    (29) 

 

which is ≤  0 𝑓𝑜𝑟 𝑎2 >  0, 𝑏2 >  0, 𝑐2 >
 0 𝑎𝑛𝑑 𝑘 ≤  0 Thus, the whole system 

(𝜂1, 𝜂2 ,𝜂3 ,𝜂4 ) is assymptotically stable. For 

other cases (2-5), the controllers are as presented in 

equations (30), (31), (32) and (33) respectively. 

𝑢1 =  −𝑎2 𝑧1 − 𝑦1 + 𝑥1𝑐1 + 𝑦1 − 𝑥1𝑧1 − 𝑤1

− 𝑤2 + 𝑘𝜂1 

𝑢2 =  −𝜂2 𝑐1 + 1 + 𝑧2 𝑒1 +  𝑦1 − 𝑧1 𝑐2 + 𝑏1 
− 𝑑2𝑦2 + 𝑥1𝑦1 + 𝑘𝜂2 
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𝑢3 =  −𝜂1 𝑦2 + 1 − 𝑦1𝑦2 + 𝑦1𝑑1𝑧1 + 𝑏2𝑤1

+ 𝑘𝜂3 

𝑢4 =  −𝜂4 𝑒 + 1 − 𝜂3 𝑦2 + 1 − 𝑦2𝑤1 −
𝑥1 𝑒 − 𝑎1 + 𝑎1𝑦1 + 𝑘𝜂3  (30) 

𝑢1 =  −𝑎2 𝑧1 − 𝑤1 − 𝑤2 + 𝑑1𝑦1𝑧1 + 𝑘𝜂1 
   

𝑢2 =  −𝜂2 𝑐2 + 1 + 𝜂3 𝑥2 + 1 − 𝑥2 𝑑2 − 𝑥1 −
𝑧1 𝑐2 + 𝑏1 + 𝑥1𝑦1 + 𝑘𝜂2  

𝑢3 =  −𝜂2 𝑐2 + 1 − 𝑥1 𝑎1 − 𝑏2 − 𝑥2𝑧1 +
𝑎1𝑦1 + 𝑘𝜂3  

𝑢4 =  −𝜂4 𝑒 + 1) − 𝜂3(𝑦2 + 1 − 𝑥1 𝑦2 − 𝑐1 +
𝑧1−𝑦1𝑒−1−𝑤1+𝑘𝜂4  (31) 

 

𝑢1 =  −𝑎1 𝑦1 − 𝑥1 − 𝑤2 + 𝑘𝜂1   

𝑢2 =  −𝜂2 𝑐2 + 1 + 𝑧2 𝑒1 + 𝑥1 − 𝑥1 𝑑2 − 𝑐2 −
𝑎1+𝑎1𝑦1+𝑘𝜂2  

𝑢3 =  −𝜂4 − 𝑥2𝑦2 + 𝑥1𝑦1 + 𝑏2𝑧1 − 𝑏1𝑧2 + 𝑘𝜂3

     

 (32) 

𝑢4 =  −𝜂4 𝑒 − 1 − 𝜂3 𝑦2 + 1 − 𝑧1𝑦2 + 𝑧1𝑑1𝑦1

− 𝑒𝑤1 + 𝑘𝜂4 

 

𝑢1 =  −𝑎2 𝑥1 − 𝑤1 − 𝑤2 + 𝑑1𝑦1𝑧1 + 𝑘𝜂1 

𝑢2 =  −𝜂2 𝑐2 + 1 + 𝑥1 𝑐2 + 𝑎1 + 𝑧2 𝜂1 +
𝑤1+𝑎1𝑦1−𝑤1𝑑2+𝑘𝜂2  

𝑢3 =  −𝜂4 − 𝜂4𝑑1𝑦1 − 𝑥2𝑦2 + 𝑏2𝑤1 + d1y1w2

+ kη
3
 

u4 =  −η
4
 e + 1 − η

3
 y2 + 1 − y2w1 −

z1 e + b1 + x1y1 + kη
4
   (33) 

 

V. NUMERICAL SIMULATION 
 In order to verify the effectiveness of 

controllers derived above and those in the equation 

(30 – 33) we present our numerical simulation. We 

used the Runge-Kutta simulation tool. In all the 

figures presented, the hyperchaotic Lorenz system 

(drive) parameters selected remain constant at a1 = 

10, b1 = 8/3, c1 = 28, d1 = 2.25, with initial 

condition values x1 = 0.1, y1 = 0.1, z1 = 0.1, w1 = 

0.1, the hyperchaotic Chen system (response), 

parameters selected remain constant at a2 = 35, b2 = 

3, c2 = 12, d2 = 7, e2 = 0.5 and variable parameters 

chosen as x2 = 0.5, y2 = 0.01, z2 = 0.8, w2 = 0.5. the 

step size was maintained at H = 0.005 and t = 10. 

The synchronization of the slave system with the 

master system at each of the state variable is 

presented in (Figures 3) for states e1, e2, e3 and e4 

respectively, while the fifth graph in this figure 

shows the result for the combined states for case 1. 

In each of these figures, synchronization took place 

when each of the controllers u1, u2, u3 and u4 was 

activated at t ≥ 10. Using the same parameters, and 

making use of our results for other cases 2, 3, 4 and 

5 for the non-identical hyperchaotic systems 

unified and periodically converged to zero as 

shown in the figures 4 as time tends to infinity 

which signifies that the global synchronization 

between systems (5) and (6) has been achieved. 

 

VI. CONCLUSION 
 We have analyzed and validated the 

possibility of the multiswitchingsynchronization of 

the non-identical hyperchaotic Lorenz (drive) and 

that of Chen’s (response) systems based on 

integrator back stepping technique. We extended 

the usual master-slave synchronization scheme for 

low order chaotic systems to study the 

synchronization of this higher order systems on one 

side, and provided various switches in the design of 

the controllers. Each of the 4-dynamical states was 

successfully synchronized. The synchronization of 

each of the switches in other cases was also 

successful. By implication, electronic information 

can be hidden in any or all of this 4D hyperchaotic 

system and such information can be locked up in 

any of the states in each of the cases, with at least 

four different switch codes. 

 Such information can be transferred, 

communicated and retrieved by applying the 

control inputs for each or all the dynamical states 

and respective switches. This makes the 

information more secure not only because of the 

hyperchaos status of the system in consideration, 

but also the several switches that must be unlocked 

to retrieve the information. Our numerical results 

confirm the effectivenessof the analytical technique 

and we belief that they are observable in laboratory 

experiments. 
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